279 | 0 | 67 |
下载次数 | 被引频次 | 阅读次数 |
为提升滨海湿地的生境修复能力,有效解决含盐水污染问题,为人工湿地生态化过程的进一步推广和应用提供参考,选取滨海耐盐型湿地植物互花米草(Spartina alterniflora)和海三棱藨草(Scirpus mariqueter),构建岩棉耦合耐盐湿地植物强化型人工湿地装置。通过设计不同的系统运行条件和进水负荷,开展复合型人工湿地净化效果验证的微宇宙试验,明确最适宜的岩棉耦合耐盐植物的复合型人工湿地类型和最佳运行条件。结果表明,盐度为1‰,碳氮比(C/N)为4:1时,种植互花米草且岩棉放置位置为上中层的装置对总氮(TN)、总磷(TP)处理效果最佳,分别为85.48%、91.30%;盐度为15‰,C/N=5:1时,种植互花米草且岩棉放置位置为上中层的装置对TN、TP、化学需氧量(CODMn)去除效果最佳,去除率分别为69.50%、70.73%、68.50%。电镜图显示岩棉表面可附着水体中的盐粒子,提升装置抵御盐胁迫能力,岩棉和石英砂的不同组合对功能微生物的富集存在明显影响。岩棉的加入有助于植物体内功能性酶的产生,提升了功能性菌种的丰度,通过主坐标分析(PCoA)发现复合装置内微生物的群落分布得到了优化。
Abstract:In this study two coastal salt-tolerant wetland plants, Spartina alterniflora(Sp) and Scirpus mariqueter(Sc), were selected to establish a plant-enhanced artificial wetland with different combinations of rock-wool and quartz sand. A microspace experiment was then carried out to verify the extent of purification by constructed composite wetland devices on saline wastewater under different operating conditions and influent loads. The objectives were to find the most suitable components and optimal operating conditions for the wetland, improve the habitat restoring ability of coastal wetlands, address saltwater pollution, and provide a reference to promote the use of constructed wetlands as an ecological means for removing pollutants. Four constructed wetland designs were tested:(1) Sp with quartz sand,(2) Sp with layered rock-wool and quartz sand,(3) Sc with quartz sand,(4) Sc with layered rock-wool and quartz sand. Four water retention times(1, 2, 3, 4 d) were set and measurements were made, including every day water quality, SEM scanning of rock-wool surface and the enzyme activity of plant leaves. In addition,microbial community composition and diversity on the rock-wool and quartz sand surfaces were examined. Results show that the optimal operating condition for the constructed wetland was Sp with rockwool at middle and upper layers. At a salinity of 1‰ and a C/N ratio of 4:1, the maximum removal rates for total nitrogen(TN) and total phosphorus(TP) were 85.48% and 91.30%, respectively. At a salinity of15‰ and C/N=5:1, the maximum removal rates of TN, TP and chemical oxygen demand(CODMn) were69.50%, 70.73% and 68.50%, respectively. Examination of the rock-wool surface by scanning electron microscope showed salt particles on the rock-wool surface that increased the system's ability to resist salt stress. Different combinations of rock-wool and quartz sand had an obvious effect on the enrichment of functional microorganisms. The addition of rock-wool contributed to the production of functional enzymes in plants and increased the abundance of functional strains. Principal coordinate analysis(PCoA)shows that the microbial community distribution was optimized in the complex plant-enhanced artificial wetland.
曹意茹,赵曙光,耿春茂,等,2023.耐盐复合菌生物强化高盐废水深度脱氮处理中试[J].净水技术,42(10):117-123,165.
陈小红,许贻斌,林永青,等,2024.不同填料生物膜对海水养殖尾水的脱氮效能及微生物群落分析[J].大连海洋大学学报,39(1):9-19.
杜帅,李凤娟,李南锟,等,2019.厌氧氨氧化系统的快速启动及其脱氮性能研究[J].环境科学与技术,42(5):101-108.
龚吕,胡阳,李贲,等,2024.互花米草治理工程对大型底栖动物群落结构的影响:以上海南汇边滩为例[J/OL].生态学杂志,1-14[2024-05-21].http://kns.cnki.net/kcms/detail/21.1148.q.20240321.1944.002.html.
国家环保局,2002.水和废水监测分析方法[M].4版.北京:中国环境科学出版社.
金位栋,焦巨龙,李剑屏,等,2021.微生物菌剂强化A/O脱氮反应器运行效果及微生物群落变化[J].环境工程技术学报,11(2):354-364.
李冬梅,王万忠,马艳,等,2022.硫铁矿人工湿地对微污染水源的水质净化效果[J].水生态学杂志,43(1):56-62.
吕航,2023.乌梁素海湖滨湿地微生物脱氮过程及其机制研究[D].呼和浩特:内蒙古大学.
马浩,2023.菌藻共生好氧颗粒污泥系统构建及强化脱氮机制研究[D].西安:西安理工大学.
邱立萍,张晓凤,2023.高盐废水处理技术研究及应用进展[J].无机盐工业,55(2):1-9.
田丰,2023.海三棱藨草种子生物学特性及其在生态修复中应用[D].上海:华东师范大学.
王毅霖,杨雪莹,谢加才,等,2021.高含盐废水生物处理技术研究进展与展望[J].油气田环境保护,31(5):6-10.
伍建业,吴永贵,兰美燕,等,2023.复合人工湿地对陆基水产养殖废水中氮磷的净化及其微生物群落特征[J].环境工程学报,17(2):517-531.
夏国栋,2023.复合垂直流人工湿地基质微生物群落特征及其影响因素研究[D].贵阳:贵州民族大学.
肖建敏,李辉,雷睿欣,2024.碱矿渣水泥早期反应产物微观结构演化过程[J].建筑材料学报,27(5):381-390.
杨效田,王彩龙,刘俊艳,等,2024.六水合氯化钙基相变材料对岩棉保温板储能和保温性能的影响[J].兰州理工大学学报,50(1):27-34.
张饮江,李肖,程梦雨,等,2022.碱矿渣材料协同耐盐植物强化人工湿地净化高盐水体的效果[J].环境科学研究,35(1):161-172.
卓亿元,刘草葱,姜蕾,等,2023.铁/锰矿基人工湿地脱氮除磷性能及机理[J].环境工程学报,17(5):1441-1450.
Cao T N,Bui X T,Le L T,et al,2022.An overview of deploying membrane bioreactors in saline wastewater treatment from perspectives of microbial and treatment performance[J].Bioresource Technology,363:127831.
Chen X Y,Tian Z F,Zhu J,et al,2022.Nitrogen removal characteristics of wet-dry alternative constructed wetlands[J].Green Processing and Synthesis,11(1):1040-1051.
Gu K Y,Yang X W,Yan X,et al,2024.Effectiveness of a novel composite filler to enhance phosphorus removal in constructed wetlands[J].Environmental Science and Pollution Research,31(11):1712417052-17063139.
Guo L,Xie Y M,Sun W Q,et al,2023.Research progress of high-salinity wastewater treatment technology[J].Water,15(4):684.
Han Z G,Wang C,Lei B H,et al,2023.A limited overlap of interactions between the bacterial community of water and sediment in wetland ecosystem of the Yellow River floodplain[J].Frontiers in microbiology,14:1193940.
Leng C P,Yuan Y G,Zhang Z Y,et al,2023.Decomposition of phosphorus pollution and microorganism analysis using novel CW-MFCs under different influence factors[J].molecules,28(5):2124.
Li X,Cheng M Q,Jiao X X,et al,2022.Advances in microbial electrochemistry-enhanced constructed wetlands[J].World Journal of Microbiology and Biotechnology,38(12):239.
Liu L M,Hu J D,Teng Y G,et al,2023.Response of microbial community to different media in start-up period of Annan constructed wetland in Beijing of China[J].Environmental Pollution,337:122529.
Ma Y X,Zhu L H,Peng Z,et al,2023.Wave attenuation by flattened vegetation[J].Frontiers in Marine Science,10:1106070.
Ma Y X,Tashpolat N,2023.Current status and development trend of soil salinity monitoring research in China[J].Sustainability,15(7):5874.
Mulkeen C J,Gormally M J,Swaney W T,et al,20234.Sciomyzidae (diptera) assemblages in constructed and natural wetlands:implications for constructed wetland design[J].Wetlands,44(1):5.
Park K,Mudgal A,Mudgal V,et al,2023.Ddesalination,water re-use,and halophyte cultivation in salinized regions:a highly productive groundwater treatment system[J].Environmental Science&Technology,57(32):11863-11875.
Sithamparanathan E,Sutton N B,Rijnaarts H H M,et al,2023.Controlling nitrogen removal processes in improved vertical flow constructed wetland with hydroponic materials:effect of influent COD/N ratios[J].Water,15(6):1074.
Song Q,Chen X G,Hua Y,et al,2023.Biological treatment processes for saline organic wastewater and related inhibition mechanisms and facilitation techniques:a comprehensive review[J].Environmental Research,239(P1):117404.
Stefanatou A,Schiza S,Petousi I,et al,2023.Use of climbing and ornamental plants in vertical flow constructed wetlands treating greywater[J].Journal of Water Process Engineering,53:103832.
Wang S H,Yang H R,Che F F,et al,2023.Removal efficacy of fly ash composite filler on tailwater nitrogen and phosphorus and its application in constructed wetlands[J].Frontiers in Chemistry,11:1160489.
Wang S Z,Hu J,He S J,et al,2022.Removal of ammonia and phenol from saline chemical wastewater by ionizing radiation:performance,mechanism and toxicity[J].Journal of Hazardous Materials,433:128727.
Yang L,Jin X H,Hu Y W,et al,2023.Technical structure and influencing factors of nitrogen and phosphorus removal in constructed wetlands[J].Water Science&Technology,89(2):271-289.
Zhang Y Q,Liang B,Ma X D,et al,2023.Enhancing the anoxic/oxic process for treating hypersaline amide wastewater using a synthetic bacterial agent to regulate core bacterial interactions[J].Journal of Water Process Engineering,55:104191.
Zhao C F,Jiao T,Zhang W H,et al,2024.Nutrients recovery by coupled bioreactor of heterotrophic ammonia assimilation and microbial fuel cell in saline wastewater[J].Science of the Ttotal Eenvironment,918:170697.
Zhao Z M,Wang Z F,Cheng M Y,et al,2020.Adding ferrous ions improved the performance of contaminant removal from low C/N coastal wastewater in constructed wetlands[J].Environmental Science-Water Research&Technology,6(12):3351-3360.
Zhu H,Liu H F,Ji Y F,et al,2024.Electrocatalytic mechanism of titanium-based anodes and research progress of chemical saline wastewater treatment:a short review[J].Water Resources and Industry,31:100242.
基本信息:
DOI:10.15928/j.1674-3075.202404070114
中图分类号:X703;X17
引用信息:
[1]刘雁秋,赵志淼,高雪晴等.岩棉耦合耐盐植物提升人工湿地处理含盐废水的效果及机理[J].水生态学杂志,2024,45(06):180-191.DOI:10.15928/j.1674-3075.202404070114.
基金信息:
河北省湿地生态与保护重点实验室开放基金(hklk202201)